

Technical Specification

EC-Link Specification

Document No: TS-0007

REV	DATE	REASON FOR ISSUE	PREPARED BY	CHECKED BY	APPROVED BY
1	2016-11-01	First revision	JL	JTS	JL
2	2017-10-16	Updated during implementation	JL	OTE	JL
3	2018-31-07	Changed behavior of commands	OTE	JL	GAØ
		when armed/disarmed.			
4	2020-05-12	Updated maximum POD bytes	GAØ	MS	GAØ
5	2020-10-21	Added Modbus TCP and VX-100-BU	JL	GAØ	GAØ
6	2020-12-21	Altered byte swap on Modbus TCP	JL	GAØ	GAØ
7	2021-02-04	Added EtherCAT support	JL	GAØ	GAØ
8	2022-04-08	For version 2.0 with MultiArm	JL	GAØ	GAØ
9	2023-02-20	Added more input data	JL	GAØ	GAØ
10	2023-09-11	Added RU state "Failed"	JL	AdrianL	AdrianL
11	2023-11-22	Added EtherNet/IP support	JL	AdrianL	AdrianL

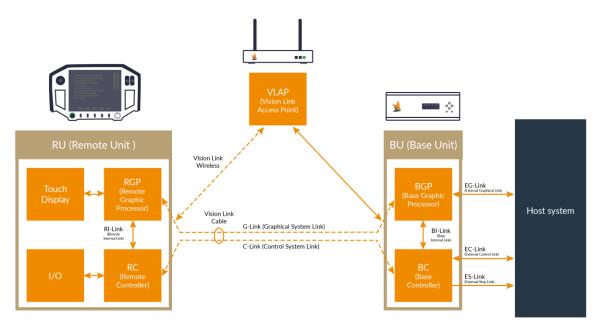
This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Vision Remote AS.

Table of Contents

1	Int	troduct	ion	4
	1.1	Purpo	se	4
	1.2	Syster	n Overview	4
	1.3	Defini	tions and Abbreviations	4
	1.4	Workf	low	5
	1.5	Refere	ences	5
	1.6	Revisi	on History	6
2	Ge	eneral.	·	7
	2.1	Opera	tional Mode	7
	2.2	Value	encoding	7
	2.3	BU co	nfiguration	7
3	Pro	ofibus	DP	8
	3.1	Gettin	g started guide	8
	3.2		je	
	3.3	Profib	us DP Master Configuration	9
	3.4		g Profibus address	
	3.5		us interface	
	3.5	5.1	Operation Mode LED	
	3.5	5.2	Status LED	
	3.5	5.3	Profibus Connector	
4	Pro	ofinet I	RT	
	4.1		g started guide	
	4.2		L file	
	4.3		et IO controller configuration	
	4.4		g station name and IP address	
	4.5		et interface	
	4.5		Network Status LED	
		5.2	Module Status LED	
	4.5		Link/Activity LED	
		5.4	Profinet Connector	
	4.5	-	Media Redundancy	
5			ГСР1	
0	5.1		g started guide	
	5.2		us TCP functionality	
	5.3		g IP configuration	
	5.4		us TCP interface	
	-	4.1	Network Status LED	
	-	4.2	Module Status LED	
	-	4.3	Link/Activity LED	
		1.4	Ethernet Connector	
6			2	-
0	6.1		g started guide	
	6.2		es	
	6.3		CAT functionality	
	0.5	LUIER	CAT functionality	. т

	6.4	Ether	CAT master configuration	21
	6.5	Ether	CAT interface	21
	6.	5.1	RUN LED	22
	6.	5.2	ERROR LED	22
	6.	5.3	Link/Activity LED	22
	6.	5.4	EtherCAT Connectors	22
7	Et	herNet	/IP	23
	7.1	Gettir	ng started guide	23
	7.2	Ether	Net/IP functionality	23
	7.3	Ether	Net/IP scanner configuration	24
	7.4	Settin	g IP configuration	24
	7.5	Ether	Net/IP interface	24
	7.5	5.1	Network status LED	24
		5.2	Module Status LED	
		5.3	Link/Activity LED	
		5.4	EtherCAT Connectors	
8			ta	
	8.1		ate	
	8.2	-	status	
	8.3		ate	
	8.4	-	ystick	
	8.5		h state	
9		•	lata	
10	Da		V	
	10.1		ommand input	
	10.2	Co	ommand output	31
	10.3		riodic input data	
	10.4		riodic output data	
	10.5		med vs. Disarmed	-
	10.6		Link fallback operation	
11	Tro	oubles	hooting guide	33

1 Introduction


1.1 Purpose

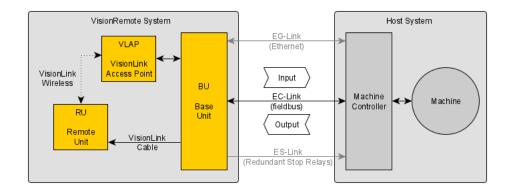
This document specifies the fieldbus interface used for the VisionRemote EC-Link. This document covers Profibus DP, Profinet RT, Modbus TCP, EtherCAT and EtherNet/IP variants.

This document is valid both for VM-110-BU and VX-100-BU. The term BU is used for both.

This document is valid for Visionlinkserver version 2.0.0 and onwards. For older versions, use revision 7 of this document.

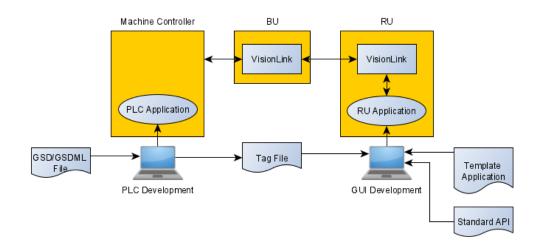
Please note that data presented on the RU graphical screen and commands entered on graphical screen are handled by the RU application. The RU application is adapted to suit the actual machine. This document specifies how to exchange this data over EC-Link, but the actual data content must be specified in a machine specific document.

1.2 System Overview


1.3 Definitions and Abbreviations

See system overview in section 1.2.

Machine controller is used for the computer or PLC that communicates with BU using the fieldbus interface specified in this document.


The term 'Input' is used for data sent from BU to machine controller. The term 'Output' is used for data sent from machine controller to BU. These terms are identical to PLC terms for dedicated peripheral units:

Input data is described in chapter 8. Output data is described in chapter 9.

1.4 Workflow

Typical workflow when developing a PLC application and an accompanying RU application is:

1.5 References

SS-0001 Vision Remote VM-110 System Specification

SS-0003 Vision Remote VX-100 System Specification

1.6 Revision History

Revision	Description	
1	Initial revision.	
2	Updated during implementation:	
	 Extended specification to cover both Profinet and Profibus. 	
	 Changed document name to cover both Profibus and Profinet. 	
	 Added description of different operational modes. 	
	 Extended values for RU state and Link state. 	
3	The behavior of the command messages when Armed and disarmed has been changed.	
	Now commands are forwarded to all remotes regardless of arming state.	
4	Corrected maximum bytes to 51200 in chapter 7.4	
5	Added chapter 5 describing Modbus TCP interface.	
	Specified that document covers both VM-110-BU and VX-100-BU. Renamed document	
	accordingly.	
6	Altered byte swapping on Modbus TCP to ensure full compatibility with standard.	
7	Added chapter 6 describing EtherCAT interface.	
8	Modified to match revision 2.0.0 of Visionlinkserver / BC version 2.0.0:	
	 Added Command RU ID to input and output data. 	
	- Added support for MultiARM.	
9	Added C-Link and G-Link status for each remote. Added fallback link status.	
10	Added RU state "Failed" in section 8.3.	
11	Added chapter 7 describing EtherNet/IP interface.	

2 General

2.1 Operational Mode

The fieldbus interface in BU can be configured for one of the following operational modes:

Mode	Description	FMAP
Disabled	No active EC-link	0
Input Only	Inputs (status, joysticks, and switches) are transferred on fieldbus	1
Input + Commands	Inputs and commands from/to GUI application transferred on fieldbus	3
Standard	Inputs, commands, and periodic data to GUI application transferred	
	on fieldbus	
MultiArm	Inputs from 3 remotes, commands, and periodic data transferred on	15
	fieldbus	

The operational mode of your system is configurable, see section 2.3.

2.2 Value encoding

All multi bytes values are encoded in big-endian format (most significant byte first).

All data specified in this document uses one of the following encodings:

- Unsigned integer with a length of 8, 16 or 32 bits.
- Signed integer with a length of 8, 16- or 32-bits using two's complement.

All size values in this document are to be interpreted as bytes.

2.3 BU configuration

The BU is configured and managed using the built-in web server. Connect your computer to the BU network port labelled "TEST PORT" and open the web page at 192.168.32.1. The user interface will be specified in a separate document.

3 Profibus DP

3.1 Getting started guide

Depending on your system configuration, you can skip some of the steps in this guide:

Mode	Skip steps	
Input Only	4,5,7 and 8	
Input + Commands	5 and 8	
Standard or MultiArm	None	

To successfully integrate the BU in your Profibus system, do the following:

- 1. Add the BU to your Profibus master configuration. See section 3.3.
- 2. Configure Profibus address on BU. See section 3.4.
- 3. Connect BU to your Profibus network. See section 3.5.3.

At this stage, the Profibus is running, and data from BU is available in the machine controller. If your system is not of type "Input only", the BU will still indicate an error because it will not detect that the machine controller acknowledges and sends data to/from BU.

- 4. Add Software in machine controller to update CAO (Command Acknowledge Output), see section 10.1.
- 5. Add software in machine controller to update PCO (Periodic Counter Output), see section 10.4.

At this stage the BU will indicate normal operation.

- 6. Add software in machine controller to handle periodic data from RU.
- 7. Add software in machine controller to send commands to RU application and to handle commands from RU application.
- 8. Add software in machine controller to send periodic process data to RU application.
- 9. Enjoy.

3.2 GSD file

BU is delivered with a GSD file to be used when configuring the Profibus master.

3.3 Profibus DP Master Configuration

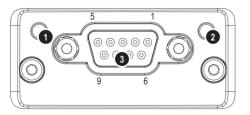
To add BU to your Profibus master, import the supplied GSD file into your Profibus master configuration tool. Use the configuration tool to add a node of type "VR-BU-DP".

Mode	Module to select	Input bytes	Output Bytes
Input Only	VR-BU Input Only	66	0
Input + Commands	VR-BU Input + Command	66	24
Standard	VR-BU Standard	66	228
MultiArm	VR-BU MultiArm	142	228

Then add a single module depending on the operational mode of the BU:

3.4 Setting Profibus address

The Profibus address can be configured in two different ways:


- With an address in range 1 to 125 set as part of BU configuration. See section 2.3. This is the recommended solution.
- By using the "Set slave address" Profibus function. This function is enabled by selecting address 126 in BU configuration.

When using the "Set slave address" function, the BU configuration utility can be used to reset EC link configuration to factory default. This will reset the slave address to 126.

3.5 Profibus interface

The Profibus interface module is a Anybus CompactCom M40 module made by HMS Industrial Networks, part number AB6600.

Nr	Item
1	Operation Mode LED
2	Status LED
3	Profibus Connector, 9-pin female D-Sub

3.5.1 Operation Mode LED

State	Indication	
Off	Not online / No power	
Green	Online, data exchange	
Flashing Green	Online, clear	
Red, 1 Flash	Parametrization error	

Red, 2 Flashes

Profibus Configuration error

3.5.2 Status LED

State	Indication
Off	Not initialized
Green	Initialized
Flashing Green	Initialized, diagnostic event(s) present
Red	Exception error

3.5.3 Profibus Connector

9-Pin D-Sub Female

Pin	Signal	Description
1	-	-
2	-	-
3	B-Line	Positive RxD/TxD, RS485 level
4	RTS	Request to send
5	GND Bus	Ground (isolated)
6	+5V Output	+5V termination power
7	-	-
8	A Line	Negative RxD/TxD, RS485 level
9	-	-
Housing	Cable Shield	Connected to protective earth

This layout is according to the industry standard for Profibus.

4 Profinet RT

4.1 Getting started guide

Depending on your system configuration, you can skip some of the steps in this guide:

Mode	Skip steps	
Input Only	4,5,7 and 8	
Input + Commands	5 and 8	
Standard or MultiArm	None	

To successfully integrate the BU in your Profinet system, do the following:

- 1. Add the BU to your Profinet controller configuration. See section 4.3.
- 2. Configure Profinet IP address and station name on BU. See section 4.4.
- 3. Connect BU to your Profinet network. See section 4.5.4.

At this stage, the Profinet is running, and data from BU is available in the machine controller. If your system is not of type "Input only", the BU will still indicate an error because it will not detect that the machine controller acknowledges and sends data to/from BU.

- 4. Add Software in machine controller to update CAO (Command Acknowledge Output), see section 10.1.
- 5. Add software in machine controller to update PCO (Periodic Counter Output), see section 10.4.

At this stage, the BU will indicate normal operation.

- 6. Add software in machine controller to handle periodic data from RU.
- 7. Add software in machine controller to send commands to RU application and to handle commands from RU application.
- 8. Add software in machine controller to send periodic process data to RU application.
- 9. Enjoy.

4.2 GSDML file

BU is delivered with a GSDML file to be used when configuring the Profinet controller.

4.3 Profinet IO controller configuration

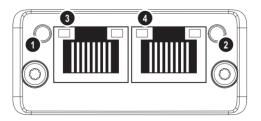
To add BU to your Profinet controller, import the supplied GSDML file into your Profinet controller configuration tool. Use the configuration tool to add a node of type "VR-BU-PIR".

Then add modules depending on the operational mode of the BU:

Mode	Module in slot 1	Module in slot 2	Input bytes	Output Bytes
Input Only	Inputs	<none></none>	66	0
Input + Commands	Inputs	Command Outputs	66	24
Standard	Inputs	Standard Outputs	66	228
MultiArm	MultiArm Inputs	Standard Outputs	142	228

Set the station name configured into the BU in the controller configuration.

4.4 Setting station name and IP address


Use the Profinet controller configuration tool to program a unique station name into BU. If your system has multiple base units, each BU must have a unique station name.

There is normally no need to configure an IP address in BU. The Profinet controller assigns the IP address during startup using Profinet DCP.

4.5 Profinet interface

The Profinet interface module is a Anybus CompactCom M40 module made by HMS Industrial Networks, part number AB6605.

Nr	Item
1	Network Status LED
2	Module Status LED
3	Link/Activity LED (port 1)
4	Link/Activity LED (port 2)

4.5.1 Network Status LED

State	Indication			
Off	No power / No Connection with IO Controller			
Green	Connection with IO controller established.			
	IO controller in RUN state.			
Green, 1 Flash	Connection with IO controller established.			
	IO controller in STOP state or IO data bad.			
	IRT synchronization not finished.			
Green, Blinking	Used by engineering tools to identify the node on the network.			
Red	Major internal error in module.			
Red, 1 Flash	Station name is not set.			
Red, 2 Flashes	IP address is not set.			
Red, 3 Flashes	Configuration error. Expected Identification differs from Real Identification.			

4.5.2 Module Status LED

State	Indication
Off	Module not initialized by application.
Green	Normal Operation.
Green, 1 Flash	Diagnostics event(s) present in module.
Red	Exception error/ Fatal event. Major internal error in module.
Green/Red	Firmware update in progress. Do NOT power off the module
alternating	

4.5.3 Link/Activity LED

State	Indication			
Off	No Link established (not connected)			
Green	Link established, no communication			
Green, flickering	Link established, communication present			

4.5.4 Profinet Connector

2 RJ45 connectors. The Ethernet interface operates at 100 Mbit, full duplex, as required by PROFINET.

Pin	Description
4,5,7,8	Connected to chassis ground over serial RC circuit
6	RD-
3	RD+
2	TD-
1	TD+
Housing	Cable shield

The shield of the RJ45 connector is not connected directly to Protective Earth in BU. For further information, see PROFINET Installation Guideline for Cabling and Assembly, available for download at <u>www.profinet.com</u>.

4.5.5 Media Redundancy

The Profinet interface module has 2 RJ45 network connectors and support the Media Redundancy Protocol (MRP) as a Media Redundancy Client (MRC).

5 Modbus TCP

5.1 Getting started guide

Depending on your system configuration, you can skip some of the steps in this guide:

Mode	Skip steps
Input Only	4,5,6,8 and 9
Input + Commands	6 and 9
Standard or MultiArm	None

To successfully integrate the BU in your system, do the following:

- 1. Set IP configuration of BU Modbus TCP interface. See section 5.3.
- 2. Connect BU to your network. See section 5.4.4.
- 3. Add Software in machine controller to periodically read input data from BU. See section 5.2.
- 4. Add Software in machine controller to periodically write output data to BU. See section 5.2.
- 5. Add Software in machine controller to update CAO (Command Acknowledge Output), see section 10.1.
- 6. Add software in machine controller to update PCO (Periodic Counter Output), see section 10.4.

At this stage, the BU will indicate normal operation.

- 7. Add software in machine controller to handle periodic data from RU.
- 8. Add software in machine controller to send commands to RU application and to handle commands from RU application.
- 9. Add software in machine controller to send periodic process data to RU application.
- 10. Enjoy.

5.2 Modbus TCP functionality

The Modbus TCP standard is available at <u>https://www.modbus.org/specs.php</u>. BU is a Modbus TCP server (slave) supporting up to 4 simultaneous connections.

BU supports all Modbus data types, and they access the BU input and output data like this:

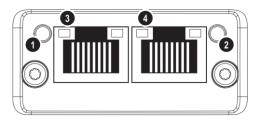
Modbus data type	Input data mapping	Output data mapping
Coils		Bitwise mapping:
		Bit 0 is LSbit of first byte (byte 0)

		Bit 1791 is MSbit of last byte (byte 223)
Discrete Inputs	Bitwise mapping:	
	Bit 0 is LSbit of first byte (byte 0)	
	Bit 511 is MSbit of last byte (byte 63)	
Holding Registers	16-bit register mapping:	16-bit register mapping:
	Register 2048 is byte 0 and 1.	Register 0 is byte 0 and 1.
	Register 2079 is byte 62 and 63.	Register 111 is byte 222 and 223.
Input Registers	16-bit register mapping:	
	Register 0 is byte 0 and 1.	
	Register 31 is byte 62 and 63.	

8-bit values are transferred with two bytes in one register. First byte is in the lower 8 bits. 16-bit values are transferred in big-endian format, as specified by the Modbus-TCP standards.

5.3 Setting IP configuration

BU Modbus TCP interface must be configured with a valid IP configuration. The recommended method is to use a tool named HMS IPconfig. This tool can be downloaded free of charge from the HMS website: <u>http://anybus.com</u>



						+	Device Configuration Apply
Туре	IP	DHCP	Version	MAC	Comment		
nybus CompactCom 40 Ethern	192.168.2.41	Disabled	1.13.01	00-30-11-3A-14-31		♥ ₹	
							촇 DHCP Configuration
							Retrieve IP settings dynamically from a DHCP server
							IP Configuration
							<u>I</u> P address
							192.168.2.41
							Subnet mask
							255.255.255.0
							Default <u>G</u> ateway
							192.168.2.1
							DNS Configuration Primary DNS 217.168.83.70 Secondary DNS 84.16.203.2 Host Name Password Password
							New Password
							🔤 Comment
							Module <u>C</u> omment
							Version Information
							Name Label
							version 1.13.01

5.4 Modbus TCP interface

The Modbus TCP interface module is a Anybus CompactCom M40 module made by HMS Industrial Networks, part number AB6603.

Nr	Item
1	Network Status LED
2	Module Status LED
3	Link/Activity LED (port 1)
4	Link/Activity LED (port 2)

5.4.1 Network Status LED

State	Indication			
Off	No IP address or in state EXCEPTION.			
Green	At least one Modbus message received.			
Green, flashing	Waiting for first Modbus message.			

TS-0007-11 EC-Link Specification.doc

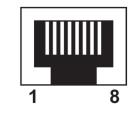
Red

IP address conflict detected, FATAL ERROR.

5.4.2 Module Status LED

State	Indication	
Off	Module not initialized by application.	
Green	Normal Operation.	
Red	Exception error/ Fatal event. Major internal error in module.	
Red, flashing	Minor fault	
Green/Red	Firmware update in progress. Do NOT power off the module	
alternating		

5.4.3 Link/Activity LED


State	Indication	
Off	No Link established (not connected)	
Green	Link established, 100 Mbit, no communication	
Green, flickering	Link established, 100 Mbit, communication present	
Yellow	Link established, 10 Mbit, no communication	
Yellow, flickering	Link established, 10 Mbit, communication present	

5.4.4 Ethernet Connector

2 RJ45 connectors. The Ethernet interfaces supports 100 Mbit or 10 Mbit, full or half duplex.

Pin	Description
4,5,7,8	Connected to chassis ground over serial RC circuit
6	RD-
3	RD+
2	TD-
1	TD+
Housing	Cable shield

The shield of the RJ45 connector is AC coupled to PE connector on BU.

6 EtherCAT

6.1 Getting started guide

Depending on your system configuration, you can skip some of the steps in this guide:

Mode	Skip steps	
Input Only	3,4,5 and 7	
Input + Commands	4 and 7	
Standard or MultiArm	None	

To successfully integrate the BU in your EtherCAT system, do the following:

- 1. Add the BU to your EtherCAT master configuration. See section 6.4.
- 2. Connect BU to your EtherCAT network. See section 6.5.4.

At this stage, the EtherCAT communication is running, and data from BU is available in the machine controller. If your system is not of type "Input only", the BU will still indicate an error because it will not detect that the machine controller acknowledges and sends data to/from BU.

- 3. Add Software in machine controller to update CAO (Command Acknowledge Output), see section 10.1.
- 4. Add software in machine controller to update PCO (Periodic Counter Output), see section 10.4.

At this stage, the BU will indicate normal operation.

- 5. Add software in machine controller to handle periodic data from RU.
- 6. Add software in machine controller to send commands to RU application and to handle commands from RU application.
- 7. Add software in machine controller to send periodic process data to RU application.
- 8. Enjoy.

6.2 ESI files

BU is delivered with a set of ESI files to be used when configuring the EtherCAT master.

6.3 EtherCAT functionality

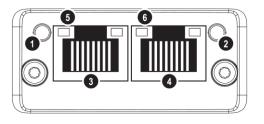
The EtherCAT interface supports the following features:

- CANopen over EtherCAT (CoE), Complete access support
- DS301 compliant
- Network cycle time down to 100µs
- 4 FMMUs, 4 Sync managers
- Support for position addressing, node addressing and logical addressing.

For further details regarding EtherCAT implementation, see Anybus document "SCM-1202-034, Anybus CompactCom 40 EtherCAT Network Guide".

16-bit values are transferred in big-endian format, as specified by the EtherCAT standards.

6.4 EtherCAT master configuration


To add BU to your EtherCAT master, import the supplied ESI files into your EtherCAT master configuration tool. The node to add depends on the operational mode of the BU:

Mode	Node name	Input bytes	Output Bytes
Input Only	VR-BU-ECT-Map1	66	0
Input + Commands	VR-BU-ECT-Map3	66	24
Standard	VR-BU-ECT-Map7	66	228
MultiArm	VR-BU-ECT-MultiArm	142	228

6.5 EtherCAT interface

The EtherCAT interface module is a Anybus CompactCom M40 module made by HMS Industrial Networks, part number AB6607.

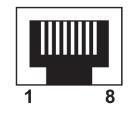
Nr	Item
1	RUN LED
2	ERROR LED
3	EtherCAT IN port
4	EtherCAT OUT port
5	Link/Activity LED IN port
6	Link/Activity LED OUT port

6.5.1 RUN LED

This LED reflects the status of the EtherCAT device.

State	EtherCAT device state
Off	INIT
Green	OPERATIONAL
Green, Blinking	PRE-OPERATIONAL
Green, Single flash	SAFE-OPERATIONAL
Flickering	BOOT
Red	If RUN and ERROR turn red, this indicates a fatal event, forcing the bus interface to a physically passive state.

6.5.2 ERROR LED


State	Indication
Off	No error (or no power)
Red, Blinking	Invalid configuration. State change received from master is not possible due to
	invalid register or object settings.
Red, Single flash	Unsolicited state change. Slave device application has changed the EtherCAT
	state autonomously.
Red, Double flash	Sync Manager watchdog timeout
Red	If RUN and ERROR turn red, this indicates a fatal event, forcing the bus interface
	to a physically passive state.
Flickering	Booting error detected, E.g. due to firmware download failure.

6.5.3 Link/Activity LED

State	Indication
Off	Link not sensed (or no power)
Green	Link sensed, no traffic activity
Green, flickering	Link sensed, traffic detected

6.5.4 EtherCAT Connectors

Pin	Description
4,5,7,8	Connected to chassis ground over serial RC circuit
6	RD-
3	RD+
2	TD-
1	TD+
Housing	Cable shield

The shield of the RJ45 connector is AC coupled to PE connector on BU.

7 EtherNet/IP

7.1 Getting started guide

Depending on your system configuration, you can skip some of the steps in this guide:

Mode	Skip steps	
Input Only	4,5,6 and 8	
Input + Commands	5 and 8	
Standard or MultiArm	None	

To successfully integrate the BU in your EtherNet/IP system, do the following:

- 1. Add the BU to your EtherNet/IP scanner configuration. See section 7.3.
- 2. Set IP configuration of BU EtherNet/IP interface. See section 7.4.
- 3. Connect BU to your EtherNet/IP network. See section 7.5.4.

At this stage, the EtherNet/IP communication is running, and data from BU is available in the machine controller. If your system is not of type "Input only", the BU will still indicate an error because it will not detect that the machine controller acknowledges and sends data to/from BU.

- 4. Add Software in machine controller to update CAO (Command Acknowledge Output), see section 10.1.
- 5. Add software in machine controller to update PCO (Periodic Counter Output), see section 10.4.

At this stage, the BU will indicate normal operation.

- 6. Add software in machine controller to handle periodic data from RU.
- 7. Add software in machine controller to send commands to RU application and to handle commands from RU application.
- 8. Add software in machine controller to send periodic process data to RU application.
- 9. Enjoy.

7.2 EtherNet/IP functionality

The EtherNet/IP interface has two ethernet ports. It supports:

- 10- or 100Mbit link speed
- Beacon Based DLR and linear network topology
- CIP Sync functionality
- Web server with customizable content

For further details regarding EtherNet/IP implementation, see Anybus document "SCM-1202-031, Anybus CompactCom 40 EtherNet/IP Network Guide".

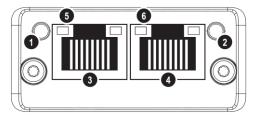
16-bit values are transferred in big-endian format, as specified by the EtherNet/IP standards.

7.3 EtherNet/IP scanner configuration

BU is delivered with a set of EDS files to be used when configuring the EtherNet/IP scanner.

To add BU to your EtherNet/IP scanner, import the supplied EDS files into your EtherNet/IP scanner configuration tool. The node to add depends on the operational mode of the BU:

Mode	Node name	Input bytes	Output Bytes
Input Only	VR-BU-IP-Map1	66	0
Input + Commands	VR-BU-IP-Map3	66	24
Standard	VR-BU-IP-Map7	66	228
MultiArm	VR-BU-IP-MultiArm	142	228


7.4 Setting IP configuration

BU EtherNet/IP interface must be configured with a valid IP configuration. The recommended method is to use a tool named HMS IPconfig. This tool can be downloaded free of charge from the HMS website: <u>http://anybus.com</u>

7.5 EtherNet/IP interface

The EtherNet/IP interface module is an Anybus CompactCom M40 module made by HMS Industrial Networks, part number AB6604.

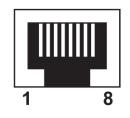
Nr	Item
1	Network status LED
2	Module status LED
3	EtherNet/IP port 1
4	EtherNet/IP port 2
5	Link/Activity LED port 1
6	Link/Activity LED port 2

7.5.1 Network status LED

State	EtherCAT device state
Off	No power or no IP address

Green	Online, one or more connections established (CIP Class 1 or 3)
Green, Flashing	Online, no connections established
Red	Duplicate IP address, FATAL error
Red, Flashing	One or more connections timed out (CIP Class 1 or 3)

7.5.2 Module Status LED


State	Indication
Off	No power
Green	Controlled by a Scanner in Run state
Green, flashing	Not configured, Scanner in Idle state
Red	Major fault (EXCEPTION-state, FATAL error etc.)
Red, flashing	Recoverable fault(s). Module is configured, but stored parameters differ from
	currently used parameters

7.5.3 Link/Activity LED

State	Indication
Off	Link not sensed (or no power)
Green	Link (100 Mbit/s) sensed, no traffic activity
Green, flickering	Link (100 Mbit/s) sensed, traffic detected
Yellow	Link (10 Mbit/s) sensed, no traffic activity
Yellow, flickering	Link (10 Mbit/s) sensed, traffic detected

7.5.4 EtherCAT Connectors

Pin	Description
4,5,7,8	Connected to chassis ground over serial RC circuit
6	RD-
3	RD+
2	TD-
1	TD+
Housing	Cable shield

The shield of the RJ45 connector is AC coupled to PE connector on BU.

8 Input data

Field	Offset	Size	Description
	[Bytes]	[Bytes]	
PCI	0	1	Periodic Counter Input. Incremented by BU each time new
			data is available. See section 10.3.
CCI	1	1	Command Counter Input. Incremented by BU when a new
			command has been received from the armed RU
			application. See section 10.1.
PAI	2	1	Periodic Acknowledge Input. Used to acknowledge that
			periodic data has been processed by BU. See section 10.4.
CAI	3	1	Command Acknowledge Input. Used to acknowledge that
			a command to RU application has been processed by BU.
			See section 10.2.
Command RU ID	4	2	ID of RU where command was received from application.
Command from RU	6	16	Command received from RU application.
BU state	22	1	State of BU. See section 8.1.
VLAPs	23	1	Number of VLAPs connected to BU. In range 03.
Unarmed RUs	24	1	Number of unarmed RUs communicating with this BU.
EG-Link status	25	1	State of EG-Link. See section 8.2.
EC-Link status	26	1	State of EC-Link. See section 8.2.
Spare	27	1	Spare byte for future use. Set to 0 for now.
Armed RU	28	2	Unique ID of RU that is currently armed. Set to 0 if no
			remote is currently armed. When 0, all the following
			fields are set to 0.
RU state	30	1	State of RU. See section 8.3.
RU battery	31	1	RU battery level in range 0100 (%).
RU C-Link RSSI	32	1	RSSI level of C-Link in range 0100 (%).
RU cable	33	1	Set to 0 if operating on wireless VisionLink. Set to 1 if
			operating on cable.
RU docked	34	1	Set to 1 when RU is in docking station. Otherwise 0.
RU disabled	35	1	Set to 0 if remote is enabled. Set to 1 if disabled due to
			tilting. Set to 2 if disabled due to inactivity. Set to 3 if
			disabled because warning popup is not acknowledged.
RU C-Link status	36	1	State of C-Link on this RU. See section 8.2.
RU G-link status	37	1	State of G-Link on this RU. See section 8.2.
RU joystick 1 to 4	38	4 * 2	Position of joystick 1 to 4. See section 8.4.
RU switch 1 to 8	46	8 * 2	State of switch 1 to 8. See section 8.5.
RU encoder value	62	1	Encoder value. Is incremented and decremented as
			encoder is rotated. Wraps around freely, so machine
			controller must handle this if needed.

Input data means data sent from BU to machine controller. The layout is like this:

RU encoder switch	63	1	Set to 1 when encoder is pushed down. 0 if not.
Spare	64	2	Spare bytes for future use. Set to 0 for now.
Remote 2 data	66	38	Same as byte 28 to 65, but for the 2^{nd} armed RU.
Remote 3 data	104	38	Same as byte 28 to 65, but for the 3 rd armed RU.

8.1 BU state

The following BU state values are defined:

Value	Interpretation
0x00	Initial. BU is not fully operative yet.
0x01	Stopped. BU is armed against a specific RU, and RU signals that BU should stop.
0x02	External link error. Monitoring has detected an error in EC-Link or EG-Link.
0x03	Blocked. Communication is lost with an armed RU. Turn on RU and rearm to resume
	operation.
0x04	Failed. Self-diagnostics has discovered a fatal internal error in BU.
0x10	Disarmed. BU is not armed against a specific RU. Check 'Unarmed RUs' to see if any
	unarmed RUs are connected.
0x11	Armed. BU is armed against one or more RUs.

The ES-Link relays will be open when BU state is less than 0x10.

8.2 Link status

The following link state values are defined:

Value	Interpretation
0	Unused. The link is not used in this system.
1	Operational. The link operates normally.
2	No Link. Link is not operational because no valid data has been received.
3	Link error. Configuration error in system causes link to be inoperative.
4	Interface Error. Error reported by link interface module.
5	Data error. Link is up, but there is an error in the exchanged data.
6	Passive. Link is not in use. Can only be reported on C-Link when no remote is armed.
7	Fallback. Link is operative, but in fallback only.

8.3 RU state

The following RU state values are defined:

Value	Interpretation
0	Initial. No RU is armed yet.
1	Disarmed. Only used internally.
2	Armed. Remote is armed, but movements are disabled due to tilting or inactivity.
3	Enabled. Remote is armed and enabled. Movements are allowed.
4	Stopped. Active stop triggered in armed remote causing ES-Link relay to open.

TS-0007-11 EC-Link Specification.doc

5 Failed. Internal error detected in armed remote causing ES-link relay to open.

RU enters stopped state if one of the following happens while the RU is armed:

- Stop switch is activated
- Free fall or shock sensor is triggered
- A fatal error has occurred in RU

8.4 RU joystick

Joystick position as a signed integer in range +/- 1000. A passive joystick is reported as 0.

Single axis joysticks are oriented like this:

Dual axis joysticks are oriented like this:

8.5 Switch state

Note that the protocol and the electronics are prepared for up to 8 switch positions. The RU has room for 4 switches if it is equipped with a stop switch, and 5 if not. The switches are numbered from left to right.

The value reported in switch state varies with the fitted switch:

Equipment	Value reported
Pushbutton	1 if button is pushed. 0 if not.

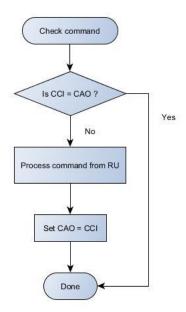
2-position toggle switch	1 if switch is in upper/right position. 0 if not.
3-position toggle switch	0 in center position. 1 in upper/right position1 in lower/left position.
Potentiometer	0 in counterclockwise position, up to 1000 in clockwise most position.
Pushbutton with LED	0 means not pushed. 1 means pushed. Add 2 if LED is lit.
Dual color LED	0 means OFF. 1 means GREEN. 2 means RED. 3 means AMBER.

When fitted with LEDs, the LEDs are controlled by the RU application. If the machine controller shall control these LEDs, functionality must be implemented in RU application to forward this data to the LEDs.

9 Output data

Output data means data sent from machine controller to BU. The layout is like this:

Field	Offset	Size	Description
PCO	0	1	Periodic Counter Output. Shall be incremented by machine
			controller each time new data is available. See section
			10.4.
CCO	1	1	Command Counter Output. Shall be incremented by
			machine controller when a new command shall be sent to
			the armed RU. See section 10.2.
PAO	2	1	Periodic Acknowledge Output. Not used yet.
CAO	3	1	Command acknowledge Output. Used to acknowledge that
			a command from RU has been processed. See section 10.1.
Command RU ID	4	2	ID of RU to send command to. Set to 0 to send to all RUs.
Command to RU	6	16	Command to be sent to RU application.
Spare	22	2	Spare bytes for future use. Set to 0 for now.
Periodic data size	24	2	Number of bytes of process data to be transferred to RU
			application
Periodic data block	26	1	Data block number of this process data. Starting from 0.
Spare	27	1	Spare byte for future use. Set to 0 for now.
Periodic data	28	200	Periodic data to be sent to RU application.



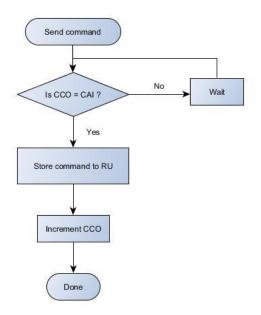
10 Data flow

10.1 Command input

When the operator executes a command on GUI (e.g. presses a "start" button or alters a set-point), a command is sent from RU application to machine controller. BU increments CCI to tell that a new command is available.

The machine controller should implement command handling logic like this:

BU monitors CAO and indicates an error if a command has not been acknowledged for 2000ms. If this error occurs when an RU is armed, the ES-Link relays will open, and the machine is forced to a safe state.


Note that it is up to the RU application and the machine controller to decide on the data content in the 16 bytes that forms a command.

Also note that an RU may send commands when not armed. The RU application must be designed so it does not send commands that may interfere with an armed remote when it is not armed.

10.2 Command output

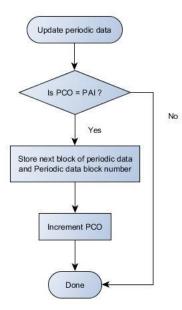
When machine controller needs to send a command to RU application, it should implement logic like this:

It is up to the machine controller and RU application to decide on the data content in the 16 bytes that forms a command. If your application does not need to send any commands, then just leave CCO at the default value.

10.3 Periodic input data

BU updates the input data every 125ms, and then increments PCI. The machine controller shall monitor PCI and bring the system to a safe state if PCI stops incrementing. A suitable timeout is 500ms.

10.4 Periodic output data


Periodic output data typically contains machine state values and measurement parameters. It is up to the RU application and the machine controller to agree on the interpretation of this data.

The machine controller shall update the periodic data to RU and increment PCO periodically.

BU monitors PCO and indicates an error if this value has not been incremented for 2000 ms. If this error occurs when an RU is armed, the ES-Link relays will open.

The machine controller shall write the size of the periodic data to be transferred to RU application. If this number is higher than 200, the machine controller must multiplex the data like this:

EC-Link handles up to 51200 bytes of periodic output data. (200 bytes * 256 blocks)

10.5 Armed vs. Disarmed

The BU handles multiple connected RUs simultaneously. With MultiArm is enabled, up to 3 RUs can be armed. With MultiArm disabled, only one RU can be armed.

Data	When remote is armed	When remote is disarmed
Periodic	Data from remote is sent.	No data from remote is sent.
Input		
Periodic	Data from machine controller is sent to	Data from machine controller is sent to RU
Output	RU application.	application.
Command	Commands from RU application are	Commands from RU application are sent to
Input	sent to machine controller.	machine controller.
Command	Commands from machine controller are	Commands from machine controller are sent
Output	sent to RU application.	to RU application.

10.6 G-Link fallback operation

Wireless G-Link is based on WiFi, so a limited operational range and occasional dropouts must be expected. When G-Link fails, the system will use C-Link instead. C-Link is more reliable but has limited capacity. When operating on C-Link, data will be prioritized like this:

Priority	Data	Description
1	Periodic Input	This data is important for machine control and system safety.
2	Command Input	Operator commands are more important than display updates.
3	Command	Critical alarms can be sent to RU application as commands to ensure
	Output	priority over Periodic Output.
4	Periodic Output	Periodic update of graphical display data has lowest priority.

As seen by the operator, the system will be operative with a failing G-Link, but the response time on screen commands will be longer, and the periodic update of screen information will be slower.

Number of RUs that can operate on fallback is limited by number of VLAPs in your system. An armed RU reserves a VLAP, so it will always use fallback if G-Link is lost.

BU reports if an armed RU runs on G-Link fallback using the RU G-Link status byte.

11 Troubleshooting guide

Any errors in the EC-Link causes BU to be locked in initial state, and normal operation is not possible. The LCD display on BU shows the EC link error state like this:

Message	Troubleshooting
EC: No Data	No data exchanged on fieldbus. Check machine controller configuration and
	connection between BU and machine controller.
EC: Cfg. Error	Configuration mismatch between machine controller and BU.
EC: Module Error	Error in fieldbus interface module.
EC: Bad data	Fieldbus is configured correctly, and data exchange is operative. The
	machine controller fails to increment PCO periodically or to acknowledge
	commands from RU application using CAO, see chapter 9.